Vanishing of the Cyclic Cohomology of Infinite Von Neumann Algebras
نویسنده
چکیده
We prove that if A is an infinite von Neumann algebra (i. e., the identity can be decomposed as a sum of a sequence of pairwise disjoint projections, all equivalent to the identity) then the cyclic cohomology of A vanishes. We show that the method of the proof applies to certain algebras of infinite matrices.
منابع مشابه
Nonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملVanishing of Second Cohomology for Tensor Products of Type Ii1 Von Neumann Algebras
We show that the second cohomology group H2(M⊗N, M⊗N) is always zero for arbitrary type II1 von Neumann algebras M and N .
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
On Cyclic Vectors and Thin Von Neumann Algebras
We prove that certain classes of von Neumann algebras with regular, injective subalgebras are thin. As a consequence, all Hochschild cohomology groups of these algebras are zero. Mathematics subject classification (2010): 46L10, 47A16.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006